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A condition is derived for the hydraulic criticality of a 2-layer flow with transverse
variations in both layer velocities and thicknesses. The condition can be expressed in
terms of a generalized composite Froude number. The derivation can be extended in
order to obtain a critical condition for an N-layer system. The results apply to inviscid
flows subject to the usual hydraulic approximation of gradual variations along the
channel and is restricted to flows in which the velocity remains single-signed within
any given layer. For an intermediate layer with a partial segment of sluggish flow, the
long-wave dynamics of the overlying and underlying layers become decoupled.

1. Introduction
The hydraulic state of a Boussinesq, rigid-lid, two-layer flow is determined by the

value of the composite Froude number

G2 = F 2
1 + F 2

2 , (1.1)

where Fn = Vn/(g
′Dn)

1/2, Vn and Dn are the velocity and thickness of layer n, and
g′ is the reduced gravity. The flow is considered subcritical, critical, or supercritical,
according to G2 < 1, G2 = 1, or G2 > 1 respectively. Apparently obtained first by
Stommel & Farmer (1952), these criteria apply to a ‘slab’ flow, meaning that Vn

and Dn are individually uniform in the transverse (cross-stream) direction (x). In
geophysical applications, the value of G2 is often obtained from data measured along
the axis or centreline of a strait (e.g. Armi & Farmer 1988 for the Strait of Gibraltar),
and deductions regarding the presence or lack of hydraulic control and maximal
exchange follow. Baines (1995) describes a generalization for the case in which the
layer thicknesses vary with x, but V1 and V2 remain constants.

It now appears that progress can be made on the more difficult case in which both
Vn and Dn are allowed to vary with x. Moreover, the technique can be applied to a
system with an arbitrary number of layers in order to obtain a critical condition, i.e.
the condition that the flow supports a free, stationary, linear, long wave. The result
is applicable to a number of geophysically important channel flows with transversely
varying velocity and depth. Applications include the Strait of Gibralter (e.g. Sannino,
Bargagli & Artale 2002, 2004; Sannino, Carillo & Artale 2007), the Bosphorus (Gregg
& Özsoy 2002) and Knight Inlet (Klymak & Gregg 2001). At these sites, the local
value of G2 can range above and below unity across certain sections, and it is difficult
to deduce whether the cross-sectional flow, as a whole, is subcritical, supercritical
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Figure 1. Definition sketches for (a) two layers and (b) multiple layers.

or critical. Loosely speaking, critical flow and hydraulic control are associated with
a choking mechanism in which upstream effects are produced when the flow is
squeezed by its physical boundaries. The upstream effects are carried by a long wave
that becomes stationary at the most constricted section. The wave must satisfy the
boundary conditions and therefore must have a cross-strait modal structure. The
wave speed depends on the flow and topography all across the channel. The results
derived herein clarify this dependence.

2. Two layers
The methodology is most easily demonstrated for a two-layer system; extension

to an arbitrary number of layers is then straightforward. Consider a channel that
is aligned in the y-direction and for which x represents the transverse direction
(figure 1a). The channel is bounded by a horizontal rigid lid located at elevation
z = zT and the bottom elevation z = h is variable. In accordance with the usual ‘long-
wave’ approximation of hydraulics, the cross-sectional geometry varies gradually, that
is on a scale large compared to the channel depth and width w, in the y-direction. The
channel contains an inviscid, incompressible, two-layer flow, with upper and lower-
layer densities ρ1 and ρ2. The density difference is slight 0 < (ρ2 − ρ1)/ρ1 � 1 and the
Boussinesq approximation is in effect. Under the assumption of gradual variations
along the channel, the y-velocity components v1 and v2 are generally much larger
than the x-velocities. Both v1 and v2 are allowed to vary with x, though the flow
is assumed to be unidirectional (vn is single-signed and non-zero) within each layer.
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The direction of volume transport in the upper layer may, of course, differ from that
of the lower layer. The assumption of gradual variations along the channel and the
lack of channel rotation imply that the interface separating the two layers is level and
the rigid-lid pressure is independent of x. (A formal argument based on long-wave
scaling of the x-momentum equation appears in Appendix A). The layer thicknesses
d1 and d2 vanish at the edges.

The analysis is based on conservation of energy and volume flux Qn within the two
layers:

B1(ψ1) =
v2

1(x)

2
+ pT , B2(ψ2) =

v2
2(x)

2
+ pT − g′d1(x), (2.1a,b)

Q1 =

∫ w

0

v1(x)d1(x) dx, Q2 =

∫ xR

xL

v2(x)d2(x) dx. (2.1c,d )

Here pT is the rigid-lid pressure divided by the mean density ρ̄, and g′ = g(ρ2 −ρ1)/ρ̄.
The Bernoulli function Bn for layer n depends only on the streamfunction ψn for
that layer, and the dependence may be regarded as specified by upstream conditions
and therefore known. The streamfunction and longitudinal velocity are related by
∂ψn/∂x = vndn.

Since the velocity is of single sign in a given layer, the streamfunction ψn varies
monotonically across the channel. At a particular ‘section’ y, each value of ψn may be
assigned a unique position xn(ψn, y). (Since further analysis will be carried out at a
fixed value of y, the y dependence will be suppressed hereafter.) For the upper layer

x1(ψ1) =

∫ x1

0

dx =

∫ ψ1

0

dψ ′
1

v1d1

,

where the boundary condition ψ1 = 0 has been imposed at the left edge (x1 = 0) of
the channel. Similarly

x2(ψ2) − xL =

∫ ψ2

0

dψ ′
2

v2d2

,

where ψ2 is taken to be zero at the left edge x = xL of the lower layer.
If (2.1a,b) are used to substitute for the velocities in the above, one obtains

x1(ψ1) =

∫ ψ1

0

dψ ′
1

21/2
[
B1(ψ

′
1) − pT

]1/2
d1(ψ

′
1)

(2.2)

and

x2(ψ2) − xL =

∫ ψ2

0

dψ ′
2

21/2
[
B2(ψ

′
2) − pT + g′d1

]1/2 [
zT − d1 − h(x2(ψ

′
2))

] , (2.3)

where the geometrical constraint (d2 = zT − d1 − h) has been used in the second
result. In the analysis that follows, it will be important to keep in mind that d1 varies
across the barotropic flange regions (zones I and III in figure 1a) and is therefore a
function of ψ1 within those regions. In region II, d1 does not depend on ψ1. For the
lower-layer integral (2.3), d1 is uniform but h is variable: h = h(x2(ψ2)).

As the channel geometry varies in y, the steady flow properties are altered. The
functions B1(ψ1) and B2(ψ2) remain fixed along the way, as do the layer volume
fluxes. As a result of the along-channel evolution, the flow may become hydraulically
critical at some section y. By definition, the flow at this y is able to support an
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infinitesimal, stationary, long-wave disturbance. The long-wave character implies that
the disturbance is subject to the same dynamical constraints as the gradually varying
background flow. The existence of a stationary wave means that it is possible to alter
the dependent flow variables a slight amount and thereby create a new steady flow
satisfying the same upstream conditions. Thus, if

(pT , d1(ψ1), x1(ψ1), x2(ψ2), xL) = (PT , D1(ψ1), X1(ψ1), X2(ψ2), XL)

represent the observed flow, which must satisfy (2.2) and (2.3), then the perturbed
flow

(PT + p̃T , D1(ψ1) + d̃1(ψ1), X1(ψ1) + x̃1(ψ1), X2(ψ2) + x̃2(ψ2), XL + x̃L)

must also satisfy (2.2) and (2.3) for the same B1(ψ1) and B2(ψ2), over the same range
of ψ1 and ψ2, and for the same cross-section geometry w and h(x) A condition for
critical flow is that a non-trivial solution for the perturbation exists.

To obtain the required condition, substitute the perturbed fields into (2.2) and
(2.3) and linearize the results about the unperturbed state. For the upper layer, the
treatment depends on whether the integration takes place over the portion of flange
regions of variable layer depth (zones I or III of figure 1a) or in the central region
(zone II). In zone I, for example, equation (2.2) becomes

X1(ψ1) + x̃1(ψ1) =

∫ ψ1

0

dψ ′
1

21/2
[
B1(ψ

′
1) − PT − p̃T

]1/2 [
D1(X1(ψ

′
1)) + (dD1/dX1)x̃1(ψ

′
1)

]
∼=

∫ ψ1

0

dψ ′
1

21/2
[
B1(ψ

′
1) − PT

]1/2
D1

+ p̃T

∫ ψ1

0

dψ ′
1

23/2
[
B1(ψ

′
1) − PT

]3/2
D1

−
∫ ψ1

0

(dD1/dX1)x̃1(ψ
′
1)

21/2
[
B1(ψ

′
1) − PT

]1/2
D2

1

dψ ′
1.

Next subtract the unperturbed part and replace 21/2[B1(ψ
′
1) − PT ]1/2 by the

unperturbed velocity V1 to obtain

x̃1(ψ1) ∼= p̃T

∫ ψ1

0

dψ ′
1

V 3
1 D1

−
∫ ψ1

0

(dD1/dX1)x̃1(ψ1)

V1D
2
1

dψ ′
1. (2.4)

Differentiation with respect to ψ1 leads to

dx̃1

dψ1

+
(dD1/dX1)

V1D
2
1

x̃1
∼=

p̃T

V 3
1 D1

,

and multiplication of this relation by D1 and use of dD1/dX1 = (dD1/dψ1)/V1D1

lead to

D1

dx̃1

dψ1

+
dD1

dψ1

x̃1 =
d

dψ1

(D1x̃1) =
p̃T

V 3
1

(zones I and III). (2.5)

The result for zone III is identical.
A similar set of steps can be carried out in zone II, leading to

d

dψ1

(D1x̃1) =
p̃T

V 3
1

− d̃1

V1D1

(zone II). (2.6)

The extra term on the right-hand side (relative to (2.5)) reflects the property that
vertical excursions of the interface influence the layer depth in zone II, but not in
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zones I or III. A similar analysis applied in the lower layer leads to

d

dψ2

(D2x̃2) =
p̃T

V 3
2

+ d̃1

[
1

V2D2

− g′

V 3
2

]
(2.7)

Note that the upper-layer depth perturbation d̃1 is that present in zone II and is
therefore independent of x.

Equations (2.5)–(2.7) are now integrated across their various zones of applicability
and the boundary conditions

D1x̃1 = 0 (at ψ1 = 0, Q1)

and

D2x̃2 = 0 (at ψ2 = 0, Q2)

are applied at the layer edges. The upper-layer streamfunction is assumed continuous,
with values ψ1L and ψ1R at the transitions (figure 1a). The resulting constraint for
the upper layer (obtained by summing the results for zones I, II and II) is

p̃T

∫ Q1

0

dψ1

V 3
1

− d̃1

∫ ψ1R

ψ1L

dψ1

V1D1

= 0,

while the result for the lower layer is

p̃T

∫ Q2

0

dψ2

V 3
2

+ d̃1

∫ Q2

0

(
1

V2D2

− g′

V 3
2

)
dψ2 = 0.

Existence of non-trivial solutions (p̃T and d̃1) to the last two relations requires that

∫ ψ1R

ψ1L

dψ1

V1D1

∫ Q2

0

dψ2

V 3
2

+

∫ Q1

0

dψ1

V 3
1

∫ Q2

0

(
1

V2D2

− g′

V 3
2

)
dψ2 = 0.

If the ψ integrals are converted back to x integrals, the result can be rearranged to
form

G2
w =

1

1

wI

∫ w

0

g′D1

V 2
1

dx

+
1

1

wI

∫ xR

xL

g′D2

V 2
2

dx

= 1. (2.8)

Here wI is the width xR − xL of the interface. When the channel cross-section is
rectangular and Vn are independent of x, Gw reduces to the well-known composite
Froude number G defined in (1.1). If the cross-section is non-rectangular, Vn are
constant in each layer, and the cross-section layer areas are A1 and A2, then (2.8)
reduces to

V 2
1

g′A1/wI

+
V 2

2

g′A2/wI

= 1,

as given by Henderson (1966).
Note that if either layer contains a subsection of sluggish flow |V 2

n /g′dn| � 1, this
region contributes a very large value to the appropriate denominator in (2.8) and the
corresponding term will be � 1. In this case the condition for critical flow is the same
as if the entire layer were inactive. For example, if the upper layer contains a finite
segment of stagnant fluid, then the critical condition becomes

w−1
I

∫ xR

xL

g′D2

V 2
2

dx = 1.
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Related behaviour was pointed out by Stern (1974) in connection with a single-
layer flow in a rotating channel with rectangular cross-section (for which the critical
condition is

∫ w

0
(V 2D)−1(1 − V 2/g′D)dx = 0) and can also be deduced from the

critical condition g
∫ d

0
V −2dz = 1 for a homogeneous, free-surface flow with vertical

shear (Garrett & Gerdes 2003). In both cases, a sluggish subinterval makes the entire
flow subcritical.

3. N-layer system
It is not hard to extend the primary result to a system with N layers (figure 1b),

provided that the width of the channel continuously decreases with depth. The
Bernoulli function for the nth layer is given by

Bn(ψn) =
v2

n

2
+ pT −

n−1∑
i=1

g′
n,idi,

with g′
n,i = [(ρn − ρi)/ρ̄]g. Then by the same arguments that led to (2.2), the position

xn of a streamline ψn in layer n is given by

xn(ψn) − xnL =

∫ ψn

0

dψ ′
n

21/2

[
Bn(ψ ′

n) − pT +
n−1∑
i=1

g′
n,idi

]1/2

dn

. (3.1)

One now proceeds as before, perturbing the dependent variables (di and pT ) and
requiring that the Bernoulli functions and layer fluxes remain fixed. The steps, which
are described in more detail in Appendix B, lead to a set of N simultaneous linear
equations for the perturbation thicknesses and lid pressure. This set may be written
in the form ad = 0, or⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 0 0 · · · 0 a1,N

a2,1 a2,2 0 · · · 0 a2,N

a3,1 a3,2 a3,3 0
... a3,N

...
...

...
... 0

...

aN−1,1 aN−1,2 aN−1,3 · · · aN−1,N−1 aN−1,N

aN,1 aN,2 aN,3 · · · aN,N−1 aN,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d̃1

d̃2

d̃3

...

d̃N−1

p̃T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (3.2)

where

an,j = wn − wn+1 − g′
n,j

∫ XnR

XnL

(
Dn

V 2
n

)
dXn (1 � n < N, 1 � j � n − 1),

an,n = −wn+1(n < N), an,N =

∫ XnR

XnL

(
Dn

V 2
n

)
dXn (n � N),

aN,j = wN − g′
N,j

∫ XNR

XNL

(
DN

V 2
N

)
dXN (1 � j < N) and an,j = 0 (otherwise).

The solvability condition for the stationary disturbance d is

det a = 0 (3.3)
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and this provides the critical condition. For example, the N = 3 result can be written

F̃ 2
1 +

(
1 − r

r
+

w3

w2

)
F̃ 2

2 + F̃ 2
3 − w3

w2

F̃ 2
1 F̃ 2

2 − F̃ 2
1 F̃ 2

3 − 1 − r

r
F̃ 2

2 F̃ 2
3 = 1 (3.4)

where

F̃ 2
1 =

(
1

w2

∫ X1R

X1L

g′
2,1D1

V 2
1

dX1

)−1

, F̃ 2
2 =

(
1

w2

∫ X2R

X2L

g′
3,2D2

V 2
2

dX2

)−1

,

F̃ 2
3 =

(
1

w3

∫ X3R

X3L

g′
3,2D3

V 2
3

dX3

)−1

,

and r = (ρ2 − ρ1)/(ρ3 − ρ1). It can be shown that this expression reduces to Smeed’s
(2000) result for the three-layer case when the velocities are uniform within each layer
and the channel cross-section is rectangular (w2 = w3). An alternative form of the
determinantal condition in terms of a tri-diagonal matrix appears in Appendix C.

4. Discussion
If the velocity in an intermediate layer n becomes sufficiently small over a finite

interval in x, then it can be shown (Appendix C) that det a becomes the product of
two determinants, one of which involves velocities and depths in the underlying layers
and the other velocities and depths in the overlying layers. The critical condition is
satisfied by setting either term zero, implying that the overlying layers are decoupled
from the underlying layers, at least in terms of the dynamics governing the stationary
long wave. As an example, a subsection of nearly stagnant flow in layer 2 of a three-
layer system leads to F̃ 2

2 →0 in (3.4), which then becomes (F̃ 2
1 − 1)(F̃ 2

3 − 1) = 0. This
condition is satisfied when the upper or lower layer is independently critical:F̃ 2

1 −1 = 0
or F̃ 2

3 − 1 = 0. The decoupling of upper- and lower-layer fluid in an N-layer system is
a generalization of behaviour described by Baines (1995) (also see Engqvist 1996) for
the case of uniform layer depths and velocities. The significance of the present result
is that long-wave decoupling does not require the separating layer to be completely
sluggish, but sluggish only over a sub-interval. If all layers contain intervals of
sufficiently sluggish flow, then it can be shown by direct extension of the Appendix
B arguments that (3.3) cannot be satisfied; that is, the flow cannot be hydraulically
critical. In the three-layer example, F̃ 2

1 , F̃ 2
2 and F̃ 2

3 would all approach zero, precluding
satisfaction of (3.4). A physical interpretation is that a flow with sluggish intervals in
each layer cannot be choked. Squeezing the flow from the sides does not necessitate
change in the volume flux (and therefore the upstream flow) in any layer: rather, the
sluggish regions are simply filled in with neighbouring, higher-speed fluid.

The situation is less clear when the velocity changes sign within a given layer.
The derivations presented herein, which require a one-to-one relationship between
x and ψ , are then violated. A stationary wave in the presence of a velocity zero
crossing would have a critical line at that location, possibly leading to instability. The
significance of ‘critical’ flow and the implications for hydraulic behaviour in these
circumstances is not clear.

Finally, it is not difficult to adapt the critical condition to provide a formula for
the phase speed of a neutral long wave in a parallel flow. Consider a long wave mode
that propagates along a uniform (in y) channel with real speed c. Since the wave
is stationary in a frame of reference moving at the same speed, and in which the
apparent layer velocity is Vn − c, a formula for c is obtained by replacing Vn in (3.3)
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(or (2.8)) by Vn − c. For example, the case of two-layer flow yields

G2
w =

1

1

wI

∫ w

0

g′D1

(V1 − c)2
dx

+
1

1

wI

∫ xR

xL

g′D2

(V2 − c)2
dx

= 1. (4.1)

Again, the coordinate transformation x → ψ requires that Vn − c be non-zero: the
wave may not have a critical line.

Baines (1995, Sec. 4.1) presents a formula for the wave speeds of an N-layer
system with uniform velocity and thickness in each layer. The polynomial structure
of the problem for the wave speed c shows that there are generally 2(N-1) waves.
Enumeration of the waves of the present system is not so simple. For example, our
result (4.1) for N = 2 is not necessarily quadratic in c and the number of waves is
therefore not restricted to 2.

The previously described decoupling of motion above and below an intermediate
layer also applies to wave motion. Suppose that (Vn − c)2 becomes � 1 within a
sub-interval of layer n; that is, the condition for a critical line Vn(xc) = c in layer n is
approached. Then, long-wave motions above and below layer n are decoupled. This
result, which is argued formally in Appendix C, appears to be a generalization of
the behaviour described by Baines (1995, Sec. 4.1) for a layered system with uniform
velocity within each layer. There, the presence of a critical layer (Vn = c) causes
long-wave motion above and below to decouple.

The work described herein was supported by the Office of Naval Research (N00014-
07-1-0590) and the National Science Foundation (OCE-0525729).

Appendix A. Justification of the x-independent lid pressure and interface
elevations

In formulating the following argument, it may satisfy some reader’s intuition to
temporarily allow for the presence of rotation about a vertical axis. The cross-channel
(x-) momentum equation for an arbitrary layer (n) is then

un

∂un

∂x
+ vn

∂un

∂y
− f vn = −∂(pn/ρ̄)

∂x
(A1)

where f is the Coriolis parameter and where the Boussinesq approximation is again
in effect. Tilting of the interfaces, or cross-channel variations of the rigid-lid pressure,
are reflected in the pressure gradient term and we wish to estimate this term.

In a hydraulically driven flow, one expects the along-channel velocity vn to scale
with the internal wave speed, which can roughly be estimated as (g′D)1/2, where
g′ and D are representative values of reduced gravity and depth. The hydrostatic
relation suggests that pn/ρo itself scales with g′D. The standard hydraulic assumption
of gradual variations along the path of the flow means that the cross-channel length
scale W , often just the channel width, is much less than the along-channel length
scale L. With this scale mismatch, the continuity equation for layer n suggest (W/L)
(g′D)1/2 as a scale for the cross-channel velocity. Reformulation of (A1) in terms of
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non-dimensional variables (with tildes) based on these scales leads to(
W

L

)2 [
ũn

∂ũn

∂x̃
+ ṽn

∂ũn

∂ỹ

]
− f W

(g′D)1/2
ṽn = −∂p̃n

∂x̃
. (A2)

In the limit (W/L → 0) of gradual variations, which applies to all traditional
hydraulic models, cross-channel pressure gradients are due entirely to the Coriolis
acceleration acting on the along-channel flow. This is the situation in hydraulic models
of rotating channel flow (e.g. Gill 1977), where density interfaces tilt in the x-direction.
Flows that lack rotation cannot support such gradients since that would require fluid
acceleration in the x-direction. The assumed small horizontal aspect ratio (W/L) does
not permit this.

Appendix B. Treatment of the case of N layers, with N > 2

Since the width of the channel continuously decreases with depth, each layer (save
the bottom layer) has flange regions (I and III in figure 1b) that contact the bottom,
along with a middle region (II) that has uniform thickness. In Region I of such a
layer, the departure x̃nin the position xn(ψn) of streamline ψn about its background
position Xn(ψn) is given by

x̃n(ψn) − x̃n(0) =

(
p̃T −

n−1∑
i=1

g′
n,i d̃i

)∫ ψn

0

dψ ′
n

V 3
n Dn

+

∫ ψn

0

1

VnD2
n

(
n−1∑
i=1

d̃i − dDn

dxn

x̃n

)
dψ ′

n (n < N), (B1)

where Vn and Dn represent the undisturbed velocity and layer thickness and d̃n(ψn)
the perturbation thickness. The steps that lead from (3.1) to (B1) are similar to those
used to obtain (2.4) from (2.2). Differentiation with respect to ψn leads, after some
rearrangement, to

d

dψn

(Dnx̃n) =

(
p̃T −

n−1∑
i=1

g′
n,i d̃i

)
V 3

n

+

n−1∑
i=1

d̃i

VnDn

(n < N). (B2)

The same result holds in region III.
In zone II, the development is similar to that used to obtain (2.6) and results in

d

dψn

(Dnx̃n) =

p̃T −
n−1∑
i=1

g′
n,i d̃i

V 3
n

− d̃n

VnDn

. (B3)

If (B2) and (B3) are integrated across their zones of applicability, the values of
Dnx̃nare matched at the joining edges, and the resulting ψn integrals are converted to
Xn integrals, one obtains

p̃T

∫ XnR

XnL

Dn

V 2
n

dXn − wn+1

n∑
i=1

d̃i +

n−1∑
i=1

d̃i

[
wn − g′

n,i

∫ XnR

XnL

(
Dn

V 2
n

)
dXn

]
= 0. (B4)
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The bottom layer (layer N) can be treated in a manner analogous to that for the
two-layer system, resulting in

p̃T

∫ XNR

XNL

DN

V 2
N

dXN +

N−1∑
i=1

d̃i

[
wN − g′

N,i

∫ XNR

XNL

(
DN

V 2
N

)
dXN

]
= 0. (B5)

Together (B4) and (B5) form a set of N simultaneous linear equations for the
perturbation layer thicknesses and lid pressure, as summarized in (3.2).

Appendix C. Long-wave decoupling and critical layers
For purposes of taking the determinant, the N×N matrix a (3.2) can be transformed

to the (N − 1) × (N − 1) tridiagonal matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

g′
2,1 − w2

I1
− w2

I2

w3
I2

0 · · · 0 0
w2
I2

g′
3,2 − w3

I2
− w3

I3

w4
I3

· · · 0 0

0 w3
I3

g′
4,3 − w4

I3
− w4

I4
0

.

.

. 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · g′
N−1,N−2 − wN−1

IN−2
− wN−1

IN−1

wN
IN−1

0 0 0 · · · wN−1
IN−1

g′
N,N−1 − wN

IN−1
− wN

IN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C1)

where

In =

∫ XnR

XnL

(
Dn

V 2
n

)
dx.

The transformation begins with division of each row n of a by an,N . Each row n

(n > 1) is then subtracted from row n − 1, and the corresponding differences are used
to form a new matrix of dimension N − 1. This step removes the rigid lid pressure
perturbation (and corresponding barotropic motions) from consideration. The new
matrix is then converted into the form (C1) by subtracting each column n from n − 1
but leaving the final column intact. The determinant is unchanged by this procedure
and the critical condition is obtained by setting it to zero. As described in § 4, the
speeds of a set of neutral long waves can be obtained by replacing In by∫ XnR

XnL

(
Dn

(Vn − c)2

)
dx.

The matrix (C1) is similar in form to that described by Baines (1995, eq. 4.1.8)
for a layered system with uniform velocity within each layer and with a rectangular
cross-section. Similar deductions follow concerning decoupling of layers. In particular,
if one of the intermediate layers moves at the critical speed Vn = c for a long wave,
then the corresponding terms in the matrix become zero. In this case it can be shown
that the layers above and below layer n become decoupled.

An analogous situation occurs in our problem with non-uniform layer velocities.
Suppose that in layer n, (Vn(x)− c)2 becomes sufficiently small in some x interval that
terms like wn/In become much smaller than terms like g′

n,n−1 in the same row of the

matrix. (In the case of hydraulically critical flow (c=0) the situation arises when V 2
n

becomes sufficiently small.) If the terms invoving 1/In are set to zero, it follow from
simple inspection that the determinant of the full matrix (C1) becomes the product
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of two co-determinants:

det

⎛
⎜⎜⎝

g′
2,1 − w2

I1
− w2

I2

w3

I2
0

w2

I2
g′

3,2 − w3

I2
− w3

I3

...

0 · · · g′
n,n−1 − wn

In−1

⎞
⎟⎟⎠

× det

⎛
⎜⎜⎝

g′
n+1,n − wn+1

In+1

wn+2

In+1
0

wn+1

In+1
g′

n+2,n+1 − wn+2

In+1
− wn+2

In+2

...

0 · · · g′
N−1,N−2 − wn−1

In−1

⎞
⎟⎟⎠ = 0

(C2)

The first matrix involves velocities and layer depths above layer n; the second involves
velocities and layer depths below. If the first determinant is zero while the second is
not, then the depth perturbations d̃i are finite in the layers overlying n but are zero in
the underlying layers. In this case, layer n and the fluid beneath acts like an inactive
fluid or, alternatively, like a perfect reflector of overlying long-wave motion.
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